Generalizations of Jacobsthal sums and hypergeometric series over finite fields

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Power sums over subspaces of finite fields

Article history: Received 31 August 2011 Revised 16 December 2011 Accepted 11 April 2012 Available online 25 April 2012 Communicated by L. Storme MSC: 05B25 11T24 11T71

متن کامل

Pure Gauss Sums over Finite Fields

New classes of pairs e,p are presented for which the Gauss sums corresponding to characters of order e over finite fields of characteristic p are pure, i.e., have a real power. Certain pure Gauss sums are explicitly evaluated. §

متن کامل

T-adic Exponential Sums over Finite Fields

T -adic exponential sums associated to a Laurent polynomial f are introduced. They interpolate all classical p-power order exponential sums associated to f . The Hodge bound for the Newton polygon of L-functions of T -adic exponential sums is established. This bound enables us to determine, for all m, the Newton polygons of Lfunctions of p-power order exponential sums associated to an f which i...

متن کامل

Clausen's theorem and hypergeometric functions over finite fields

We prove a general identity for a 3F2 hypergeometric function over a finite field Fq, where q is a power of an odd prime. A special case of this identity was proved by Greene and Stanton in 1986. As an application, we prove a finite field analogue of Clausen’s Theorem expressing a 3F2 as the square of a 2F1. As another application, we evaluate an infinite family of 3F2(z) over Fq at z = −1/8. T...

متن کامل

Special Values of Hypergeometric Functions over Finite Fields

For an odd prime p, define Hp(z) = ∑ u,v(mod p) ( uv(1−u)(1−v)(1−uvz) p ) , where z is an integer (mod p) and the summands are Legendre symbols. The function Hp(z) was explicitly evaluated for z = 1 by Evans (1981) and for z = −1 by Greene and Stanton (1986). Koike (1992) determined Hp(1/4)(mod p), and Ono (1998) evaluated Hp(z) for z = 1/4,−1/8, and 1/64. This paper evaluates Hp(z) for infinit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Ramanujan Journal

سال: 2021

ISSN: 1382-4090,1572-9303

DOI: 10.1007/s11139-020-00364-w